New XAFS beamline for structural and electronic dynamics of nanoparticle catalysts in fuel cells under operating conditions

نویسندگان

  • O Sekizawa
  • T Uruga
  • M Tada
  • K Nitta
  • K Kato
  • H Tanida
  • K Takeshita
  • S Takahashi
  • M Sano
  • H Aoyagi
  • A Watanabe
  • N Nariyama
  • H Ohashi
  • H Yumoto
  • T Koyama
  • Y Senba
  • T Takeuchi
  • Y Furukawa
  • T Ohata
  • T Matsushita
  • Y Ishizawa
  • T Kudo
  • H Kimura
  • H Yamazaki
  • T Tanaka
  • T Bizen
  • T Seike
  • S Goto
  • H Ohno
  • M Takata
  • H Kitamura
  • T Ishikawa
  • T Yokoyama
  • Y Iwasawa
چکیده

We are currently constructing a new X-ray absorption fine structure (XAFS) beamline BL36XU at SPring-8 dedicated for the structural and electronic analysis of the dynamic events on polymer electrolyte fuel cell (PEFC) cathode catalysts for the development of next-generation PEFCs. To investigate the cathode catalyst nanoparticles in PEFCs under the operating conditions, the beamline is designed to provide timeand spatially resolved XAFS techniques having a time resolution of 100 μs, spatial resolution of 200 nm, and depth resolution of 1 μm. We report the outline and design of the new beamline.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SPring-8 BL36XU: Catalytic Reaction Dynamics for Fuel Cells

A tapered undulator beamline BL36XU was constructed at SPring-8 to conduct structural and electronic analysis of dynamic events on polymer electrolyte fuel cell (PEFC) cathode catalysts for the development of next-generation PEFCs. BL36XU provides various time and spatially resolved XAFS techniques in an energy range from 4.5 to 35 keV for investigating PEFCs under the operating conditions. In ...

متن کامل

The effect of inclined radial flow in proton exchange membrane fuel cells performance

Computational fluid dynamics analysis was employed to investigate the radial flow field patterns of proton exchange membrane fuel cells (PEMFC) with different channel geometries at high operating current densities. 3D, non-isothermal was used with single straight channel geometry. Our study showed that new generation of fuel cells with circle stack with the same active area and inlet area gave ...

متن کامل

Methanol Steam Reforming Catalyzing over Cu/Zn/Fe Mixed Oxide Catalysts

Methanol steam reforming plays a pivotal role to produce hydrogen for fuel cell systems in a low temperature range. To accomplish higher methanol conversion and lower CO production, the reaction was catalyzed by CuZnFe mixed oxides. Various ratios of Fe and Cu/Zn were coprecipitated in differential method to optimize the CuZnFe structure. The sample containing 45Cu50Zn5Fe (Wt. %) revealed its m...

متن کامل

Fluid Dynamics Investigation of a GDI Fuel Spray by Particle Image Velocimetry

In this work, result of experimental investigation on interaction of fuel spray generated by a swirled type injector, with air motion in a prototype cylinder are presented. Experiments were carried out by planar imaging and particle image velocimetry (PIV) techniques in order to provide information about the spray structure evolution and instantaneous velocity distribution of air motion and ...

متن کامل

Modeling and simulation of a new architecure stack applied on the PEM Fuel Cell

To simulate a new economical architecture for PEM fuel cell and investigate the effectiveness of the introduced structure on the performance, computational fluid dynamics (CFD) code is used to solve the equations for a single domain of the cell namely: the flow field, the mass conservation, the energy conservation, the species transport, and the electric/ionic fields under the assumptions of st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012